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Chapter 1

Curve tracing

1.1 Some Basics

For f : I → R if f ′(c) > 0and f ′ is continuous at c for some c ∈ I, then f is
increasing in some open interval containing c (not necessarily in I). If f ′(c) < 0,
then f is decreasing in some open interval containing c. Not necessarily in I can
be clear by the given example below.

Let f : [0, 1]→ R

f(x) = x2 − x
2 , f ′(x) = 2x− 1

2 ,c = 1
2 and f ′( 1

2 ) = 1
2

For f ′(x) > 0 we get an interval (1
4 , 1) which is not equal to I

It is important to note that we are writing f ′(x) > 0 i.e. function is increasing
in ( 1

4 , 1) not in ( 1
4 , 1]. this is because our function is defined over [0, 1]. we do

not know the behaviour of the function for some x > 1 it may so happen that
f(1) < f(x) for some open interval (1, 1 + ε) and ε > 0 which will suggest f is
not increasing at x = 1.

Definition 1:

Let f : (a, b)→ R be differentiable and c ∈ (a, b). Let l(x) = f ′(c)(x−c)+f(c)be
the tangent line tof at point (c, f(c))

Definition 2:

The graph of f is said to be convex or concave at (c, f(c)) if there exists an open
interval J containing c such that ∀x ∈ J and x 6= c f(x) > l(x) or f(x) < l(x)
respectively.

Definition 3:

The point (c, f(c)) is said to be a point of inflection of f if there exists an
open interval I containing c such that either
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f ′′(x) < 0 if x < c and f ′′(x) > 0 if x > c
or
f ′′(x) > 0 if x < c and f ′′(x) < 0 if x > c

1.2 Some Basic results from Analysis

Result 1:

Intermediate Value Theorem :- Let f : [a, b] → R be continuous and let dbe
a real number in between f(a) and f(b), then there exists a point c such that
f(c) = d.

Result 2:

Mean Value Theorem :- Let f : [a, b] → R be differentiable on (a, b) and con-
tinuous at a and b, then there exists a point c in between a and b such that

f ′(c) = f(b)−f(a)
b−a .

Result 3:

A function f : X → R is said to be continuous at x if and only if for every
sequence xn : X ∩N → R and lim xn → x ⇒ lim f(xn)→ f(x)

If there exists a sequence such that xn → x ⇒ f(xn) → f(x) is not true
then f is discontinuous at x.

If function f : X → R is differentiable at some x ∈ X then it is continuous
at x. But not necessarily the converse.

Proof :- f is differentiable at x

⇒ lim
h→0

f(x+ h)− f(x)

h
= f ′(x)(exists)

⇒ lim
h→0

f(x+ h)− f(x)− hf ′(x)

h
= 0

⇒ lim
h→0

g(h)

h
= 0

g(h) = f(x+ h)− f(x)− hf ′(x)

In order to have the limit exist g(h) = 0

Now as xn → x ⇒ xn − x→ 0
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By taking h = xn − x we have

lim
n→∞

g(xn − x) = lim
xn→x

g(xn − x) = 0

⇒ lim
xn→x

f(xn)− f(x)− f ′(x)(xn − x) = 0

⇒ lim
xn→x

f(xn)− f(x) = 0

as xn − x→ 0 and f ′(x) exists

∀xn → x⇒ f(xn)→ f(x)

This shows that function is continuous at x. Note that the converse is not
true i.e. if a function is continuous then it is necessary that it will be differen-
tiable. we can take f : R→ R and f(x) = |x|

Result 4:

Let f : [a, b] → R be continuous over [a, b] and c ∈ (a, b) and f(c) > 0 ,
There exists an open interval I containing c such that ∀x ∈ I ⇒ f(x) > 0

Proof :- Let us construct a sequence such that there exists an xn such that
f(xn) ≤ 0. Consider an open Interval (c − 1, c + 1) containing c such that it
contains atleast one point x1 such that f(x1) ≤ 0. Now decrease the open in-
terval to (c− 1

2 , c+ 1
2 ) and there exists atleast one point x2 such that f(x2) ≤ 0.

In similar manner we can take upto n intervals.

For x1 we have |x1 − c| < 1 similarly for x2 we have |x2 − c| < 1
2 likewise

0 < |xn − c| < 1
n we know 1

n → 0 as n→∞
⇒ xn → c as n→∞ by sandwich theorem.
As f is continuous at c for xn → c⇒ f(xn)→ f(x)
f(c) > 0 implies that there exists an open interval I ′ such that for n > n0
f(xn) > 0. This contradicts that there exists an interval for which at least at
one point in that interval f(x) ≤ 0.

Result 5:

Let f : [a, b]→ R be differentiable on (a, b), continuous at a and b , let g = f ′,
c ∈ (a, b) and g is continuous on [a, b] such that f(c) = 0 and f ′(c) > 0,f(x)
is not a constant function and for some point x1 < c and c < x2 inside some
open interval I containing c we have f(x1) < (f(c) = 0) and f(x2) > (f(c) = 0).

Proof :- g = f ′ and g is continuous on [a, b] then we can say there exists an
open interval I containing c such that ∀x ∈ I ⇒ f(x) > 0. Choose an interval
I1 between I as [x1, c]. On applying mean value theorem on [x1, c] we have there

exists a point a1 inside I1 such that f(c)−f(x1)
(c−x1)

= f ′(a1)

f ′(a1) > 0 as I1 is in between I and c− x1 > 0 ⇒ f(c)− f(x1) > 0
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⇒ f(x1) < 0 as f(c) = 0.

similarly by taking an interval I2 between I as [c, x2] and applying mean value
theorem to it we can show that f(x2) > 0. Now on combining we can write
f(x1) < f(c) < f(x2) for some x1 and x2 inside I1 which contradicts f(x1) =
f(c) = f(x2) i.e. f is a constant function.

1.3 Theorem

Theorem 1:
Let f : (a, b) → R be differentiable and f ′′ is continuous. Assume that f ′′(c)
exists at c ∈ (a, b). Then
(1) If f ′′(c) > 0, then f is convex at c.
(2) If f ′′(c) < 0, then f is concave at c.
(3) If c is a point inflection, then f ′′(c) = 0. Not necessarily the converse is true.

Proof :- In order to show f is convex at c, we need to show that f(x) > l(x)∀x 6= c
in an open interval containing c.

f(x)− l(x) = f(x)− f(c)− f ′(c)(x− c) (1.1)

We apply mean value theorem to f either on [c, x] if x > c or on [x, c] if x < c.
In each case there exists a point x1 between x and c such that

f(x)− f(c) = f ′(x1)(x− c) (1.2)

Substituting equation (1.2) in equation (1.1) we get

f(x)− l(x) = [f ′(x1)− f ′(c)](x− c)

Now let g = f ′ and h = g′ apply Result 4 for h interval (a, b). h is contin-
uous on this interval, h(c) > 0 and c ∈ (a, b) ⇒ There exists an open interval I
containing c such that ∀y ∈ If(y) > 0.

Now apply Result 5 by taking g′(c) > 0 for the open interval I. Lets take
x < c we have g(c) > g(x1) for c > x1 ⇒ (f ′(x1)− f ′(c)) < 0andx− c < 0

⇒ (f ′(x1)− f(c))(x− c) > 0

⇒ f(x)− l(x) > 0 or f(x) > l(x)

for x > c we have g(c) < g(x1) for c < x1 and in similar manner we can
prove that f(x) > l(x).

(2) is proved similarly. We will prove (3) shortly.
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Point of Inflection

(1) Where f ′′ changes sign
(2)Geometrically the graph changes from convexity to concavity or vice versa
at that point.
(3)If x = f(t) where x is the position of a moving particle then point of inflec-
tion is the time at which the particle switches from acceleration to deceleration
or vice versa.
(4)At point of inflection tangent line at c crosses the graph of function. (loosely
not equivalent to the definition of inflection point.

Let us try to proof Theorem part (3) by fourth point of point of inflection.
c is a point of inflection then the graph of the function crosses the tangent at
c. If f is concave at c then graph of f lies below the tangent line at c in an
open interval around c. So f can not be concave at c. f ′′(c) not less than 0
(From theorem part-1). Similarly by taking convexity we can prove f ′′(c) is not
greater than 0 . This implies f ′′(c) = 0

1.4 Asymptote

Definition 4:

An affine (called ”linear” in analysis) function l(x) = ax+ b is called asymptote
for f as x→∞ if

lim
x→∞

(f(x)− l(x)) = 0

A vertical line x = a is an asymptote for f if limx→a+f(x) is infinite or
limx→a−f(x) is infinite.

For f(x) = p(x)
q(x) = (anx

n+.....+a0)
(bmxm+.....+b0)

be a rational function with an and bm non zero.

(1) If degree of p(x) = n < m = degree of q(x) , then f has the x−axis as
an asymptote.
(2)If n = m then f has a horizontal asymptote l(x) = an

bm
.

(3)If n = m + 1, we divide p and q and write f(x) = ax + b + c(x) where
limx→∞ c(x) = 0 = limx→−∞. Then the line l(x) = ax+ b is a linear asymptote
for f .
(4)If n > m+ 1, then f has no non-vertical linear asymptote.
(5)The vertical asymptote for a rational function corresponds to the zeros of
the denominator.

1.5 Tips for sketching the curve

(1) Symmetry
(a)Odd function if ∀x ∈ domf, f(−x) = −f(x). Graph of f is symmetric about
y = −x.
(b)Even function if ∀x ∈ domf, f(−x) = f(x). Graph of f is symmetric about
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x = 0 i.e. y−axis.
(c)Periodic function if ∀x ∈ domf and for a particular fundamental a. The look
of graph remains the same as it appears inside the fundamental period.

(2)Placing the points
(a) Look for the point (0, f(0)).
(b)See the behaviour of f when x→ −∞ and x→∞
This is just like we are watching how the function behaves when x→ −∞, 0,∞.Just
like when we have to sketch some function under some closed interval [a, b] we
check the functional value at x = a, b, a+b2 .

(3)Values of x for which f is not defined. Study the behaviour of the func-
tion near those values of x.

(4)Locating the critical points
(a)Find out at which point f is having local maxima and minima. Obtain the
interval for which f is decreasing or increasing.
(b)Find out point of inflection and interval for which f is concave or convex.
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Chapter 2

Vector Spaces

2.1 Some basics

Definition 1:

A non-empty set V is said to be vector space over R (or a real vector space) if
there exist maps + : V ×V → V , defined by (x, y) 7→ x+ y, called addition and
· : R×V → V , defined by (α, x) 7→ α ·x, called scalar multiplication, satisfying
the following properties:

(i)x+ y = y + x (commutativity of addition).
(ii)(x+ y) + z = x+ (y + z) (associativity of addition).
(iii)There exists 0 ∈ V such that x + 0 = x = 0 + x (existence of additive
identity).
(iv)For every x ∈ V there exists y ∈ V such that x + y = 0 = y + x. This y is
denoted by −x (existence of additive inverse).
(v)α · (x+ y) = α · x+ α · y.
(vi)(α+ β) · x = α · x+ α · y.
(vii)(αβ) · x = α(β · x).
(viii)1 · x = x.
We will adopt the following standard notation: x + (−y) is written as x − y
∀x, y ∈ V and for α ∈ R and x ∈ V we write αx for α · x.

Theorem 1: In a vector space V , we have
(a) 0 · x = 0 ∀x ∈ V .

Proof :- 0 · x = (0 + 0) · x = 0 ·+0 · x equation(1)(by (iii) and (vi))
Adding −0 · x (by (iv)) on both sides we get
0 = 0 · x+ (−0 · x) ((by (iv))
= (0 · x+ 0 · x) + (−0 · x) (by equation(1))
= 0 · x+ (0 · x+ (−0 · x)) (by (ii))
= 0 · x+ 0 (by(iv)) = 0 · x (by (iii))

(b) There is unique additive identity. It means, if 0 and 0′ are such that x+0 = x
and x+ 0′ ∀x ∈ V , then 0 = 0′
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Proof :-x + 0 = x = x + 0′ ∀x ∈ V . In particular we can write 0 + 0′ = 0
as 0′ is an additive identity.Also 0 + 0′ = 0′ as 0 is an additive identity.
⇒ +0′ = 0 + 0′ = 0
⇒ +0′ = +0

(c)The additive inverse is unique. If for a given x there are y, y′ ∈ V such
that x+ y = 0 and x+ y′ = 0, then y = y′.

Proof :- x+ y = 0 = x+ y′. Adding y′ to the first two sides we have
y′ + (x+ y) = y′ + 0
⇒ (y′ + x) + y = y′ + 0
⇒ 0 + y = y′

⇒ y = y′.

(d)(−1 · x) = −x, the negative element such that x+ (−x) = 0 ∀x ∈ V

Proof :- (−1) · x + x = (−1) · x + 1 · x = (−1 + 1) · x = 0 · x = 0 so that
(−1) · x = −x.

(e) α · 0 = 0 ∀α ∈ R and 0 ∈ V .

Proof :- We have 0 = 0 + 0
⇒ α · 0 = α · (0 + 0) = α · 0 + α · 0
⇒ α · 0 = α · 0 + α · 0
Adding −α · 0 to both sides
⇒ α · 0 + (−α · 0) = (α · 0 + α · 0) + (−α · 0)
⇒ 0 = α · 0 + (α · 0 + (−α · 0))
⇒ 0 = α · 0 + 0
⇒ 0 = α · 0.

(f)If α · x = 0 ∀α ∈ R and x ∈ V , then either α = 0 or x = 0.

Proof :- If α · x = 0 and α 6= 0, then we can multiply both sides of α · x = 0 by
α−1 to get
α−1 · (α · x) = α−1 · 0
⇒ (α−1 · α) · x = α−1 · 0
⇒ x = 0

Example :- Let X be a non-empty set. Let V = F (X,R) = f : X → R be
the set of all real valued functions on the set X. In order to show that V is a
vector space we need to check that it should satisfy all the property. So for two
real valued function f, g ∈ V , we need to define f + g.
We define it as follows (f + g)(x) := f(x) + g(x).f : X → R and g : X → R
⇒ (f + g)(x) is defined for the common domain of f(x) and g(x) i.e. on set X.
f(x) ∈ R and g(x) ∈ R ∀x ∈ X ⇒ f(x) + g(x) ∈ R ∀x ∈ X. So f + g : X → R
real valued function.That is f + g ∈ V .
We define (αf)(x) := αf(x) ∀α ∈ R. Domain of (αf)(x) is same as that of
f(x). αf(x) ∈ R ∀α ∈ R and x ∈ X. So (αf) : X → R ⇒ α ∈ V .
The 0 for the vector space V can be defined as θ : X → R , θ(x) = 0.
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Similarly we can prove those eight properties.

2.2 Subspaces

Definition 1:

Let W be a non empty subset of vector space V , then W is said to be a subspace
of V if W itself is a vector space under the operation induced from V .

Definition 2:

Let S be a non empty subset of vector space V . We define L(S) to be the
smallest subspace of V that contains S.

Result 1: W1 and W2 are two subspaces of vector space V . W1 ∩W2 is also a
subspace.

Proof :- Take x1,x2 ∈W1 ∩W2.
⇒ x1 ∈W1 and x1 ∈W2, x2 ∈W1 and x2 ∈W2

⇒ x1 + x2 ∈ W1 (as x1, x2 ∈ W1 and W1 is subspace) and x1 + x2 ∈ W2(as
x1, x2 ∈W2 and W2 is a subspace).
Take x1 ∈W1 ∩W2 ⇒ x1 ∈W1 and x1 ∈W2

⇒ αx1 ∈W1 and αx1 ∈W2 (as W1 and W2 are subspaces)
⇒ αx1 ∈W1 ∩W2.
Other eight properties can be verified similarly.
⇒ x1 + x2 ∈W1 and x1 + x2 ∈W2 ⇒ x1 + x2 ∈W1 ∩W2.

Result 2:

W is a subspace of vector space V .S is a non empty subset of W ⇒ L(S) ⊂W .

Proof :-L(S) is the smallest subspace that contains S.W ∩ L(S) is a subspace
containing S (by using Result 1). W ∩ L(S) ⊂ L(S) this implies we are having
a subspace subset of L(S).But L(S) is the smallest subspace containing S. So
the only possibility is W ∩ L(S) = L(S).
W ∩ L(S) ⊂W ⇒ L(S) ⊂W

Result 3:

W1 and W2 are two subspaces of vector space V .W1 ⊂ W2 or W2 ⊂ W1 if
and only if W1 ∪W2 is a subspace.

Proof :-W1 ⊂ W2 ⇒ W1 ∪ W2 = W2 Now as W2 is a subspace this implies
W1 ∪W2 is a subspace.
W2 ⊂ W1 ⇒ W1 ∪W2 = W1 Now as W1 is a subspace this implies W1 ∪W2 is
a subspace.
Let us try to prove the converse.
We proceed by contradiction method.W1 ∪W2 is a subspace. Let us assume
that W1 is not a subset of W2 and W2 is not a subset of W1
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⇒ ∃x ∈W1 and x is not ∈W1 and ∃y ∈W2 and y is not ∈W1.

x, y ∈W1 ∪W2 ⇒ x+ y ∈W1 ∪W2 as W1 ∪W2 is a subspace.
⇒ x+ y ∈ W1 or x+ y ∈ W2. Let us take the case when x+ y ∈ W1.As W1 is
a subspace ⇒ x+ y − x ∈W1 or y ∈W1 which is a contradiction.
When x+ y ∈W2.As W2 is a subspace ⇒ x+ y − y ∈W2 or x ∈W2 which is a
contradiction.
Hence W1 ∪W2 is a subspace ⇒W1 ⊂W2 or W2 ⊂W1.

Result 4:

Let S be a non-empty set of vector space V and L(S) be the smallest sub-
space that contains S. W be the set of all possible linear combinations of the
elements of S. Then L(S) = W .

Proof :-Any element of W can be written as αx+ βy where α, β ∈ R.
Let x, y ∈ S.As L(S) is a subspace αx ∈ L(S) and βy ∈ L(S)⇒ αx+βy ∈ L(S)
∀α, β ∈ R. ⇒W ⊂ L(S).
Let w1 and w2 be two elements of W .Then we can write w1 = α1x + β1y and
w2 = α2x+ β2y where α1, α2, β1, β2 ∈ R.
w1 + w2 = (α1x+ β1y) + (α2x+ β2y) ⇒ w1 + w2 = (α1 + α2)x+ (β1 + β2)y
⇒ w1 + w2 = αx+ βy where α = α1 + α2 and β = β1 + β2.
α ∈ R and β ∈ R as α1, α2, β1, β2 ∈ R
⇒ w1 + w2 ∈W .
For w1 ∈W and α′ ∈ R ⇒ α′w1 = α′α1x+ α′β1y = αx+ βy
So α′w1 ∈W . Similarly we can prove other eight properties to show that W is
a vector space. ⇒ L(S) ⊂W as L(S) is the smallest subspace containing S.
W ⊂ L(S) and L(S) ⊂W ⇒ L(S) = W .

Result 5:

Let V be a vector space S ⊂ V . si, t ∈ S , t = sj (for some i = j) S′ = S \ {t}.
L(S) and L(S′) be the smallest subspace containing S and S′ respectively.
If α1s1 + α2s2 + ...... + αnsn = 0 (all si are different) ⇒ αi = 0 ∀i, then
L(S′) 6= L(S).

Proof :- S′ ⊂ S and L(S) is a subspace of V ⇒ L(S′) ⊂ L(S) (By Result
2).Now we need to show that L(S′) 6= L(S). We proceed by contradiction.
So let L(S′) = L(S). t ∈ S ⇒ t ∈ L(S)(By definition) ⇒ t ∈ L(S′) (as
L(S′) = L(S))
t does not belong to S′ but t ∈ L(S′). So we can write t as linear combination
of element of S′ (by Result 4)
⇒ t = α1s1 + α2s2 + ......+ αnsn (t = sj (for some i = j) )
⇒ α1s1 + α2s2 + ......+ αnsn − 1 · t = 0 (t = sj)
⇒ αi 6= 0(for some si) which is a contradiction.

Definition 3:

Let V be a vector space and S ⊂ V . S is said to be linearly independent if
α1s1 + α2s2 + ......+ αnsn = 0 ⇒ ∀i αi = 0.
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Definition 4:

Let V be a vector space and S ⊂ V . S is said to be linearly dependent if
it is not linearly independent i.e. α1s1 +α2s2 + ......+αnsn = 0 ⇒ ∃i such that
αi 6= 0.

Result 6 :

∀t ∈ S and L(S \ {t}) 6= L(S) ⇒ S is a linearly independent set.

Proof : We will try to prove the converse of the Result. i.e. If S linearly
dependent, then ∃t ∈ S such that L(S′) = L(S).
We know that L(S′) ⊂ L(S). We take t ∈ S ⇒ t ∈ L(S). We can write
t = α1s1 +α2s2 + ......+αnsn (as S is dependent) where ∀i si ∈ S′ ⇒ t ∈ L(S′)
or L(S) ⊂ L(S′).
This completes the proof of converse.

Result 7:

From Result 6 and 7 we have S is linearly independent ⇔ ∀t ∈ S L(S \ {t}) 6=
L(S).

Definition 5:

Let S be a non empty subset of vector space V is said to be the basis of V
if any of the below statement is true.
(a)S is the maximal linearly independent set.
(b)S is the minimal spanning set.
(S is said to be spanning set if L(S) = V )
(c)S is linearly independent and spanning set.
(d) ∀v ∈ V v is unique linear combination of elements of S.
All these four statements are equivalent.
Let us try to prove that (a) and (b) are equivalent.

Proof((a)⇔ (b)) :-Assume S is maximal linearly independent set, Let u ∈ V \S
and S′ = S ∪ {u} ⇒ S′ is not linearly independent i.e. linearly dependent.
S′ is linearly dependent⇒ αv+α1s1+.....+αnsn = 0 ∃α, αi 6= 0. α 6= 0 because
if α = 0 then it will contradict our assumption that S is linearly independent.
v = −(α1

α s1 + ........+ αn

α sn) ⇒ v ∈ L(S)
V ⊂ L(S) ⇒ L(S) = V or S is the spanning set.
S is linearly dependent ⇒ ∃t ∈ S such that L(S′) = L(S) (Result 7). This
implies that L(S) = V is a minimal spanning set.
For converse spanning set implies maximal and minimal implies linear indepen-
dence.
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Chapter 3

Basics

3.1 Inverse of a function

Definition 1:

f : X → Y , f is called injective or one-to-one if ∀x1, x2 ∈ X ⇒ f(x1) 6= f(x2).
In terms of converse if f(x1) = f(x2)⇒ x1 = x2

Definition 2:

f is said to be surjective or onto if ∀y ∈ Y ∃ x ∈ X such that y = f(x).

Definition 3:

f is said to be bijective if f is injective and surjective.

Definition 4:

f−1 exists means ∃ g : Y → X such that g · f = x and f · g = y, then we
call g as the inverse of f or simply g = f−1.

Result 1:

f is said to be bijective iff f−1 exists.

Proof :- From definition of function it is easy to show that if f is bijective
then f−1 exists. Let us try to prove the converse by Definition 4.
f−1 exists means there exists g : Y → X such that g · f = x and f · g = y.
Take g · f = x. If f(x1) = f(x2) ⇒ g(f(x1)) = g(f(x2)) ⇒ x1 = x2
Also we can try the converse which is as follows
If x1 6= x2 ⇒ g(f(x1)) 6= g(f(x2)) ⇒ f(x1) 6= f(x2) (as g is a function)
This confirms that f is injective.
By the definition of f ∀xx 7→ f(x). x = g(f(x)) = g(y) ∀y ∈ Y there exists
x ∈ X in away that x 7→ f(x) such that x = g(y).
This implies g is surjective.
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Similarly by taking f · g = y we can prove that f is surjective and g is injective.
Hence it confirms that f is bijective.

Definition 5:

f : X → Y Fibre of (a point) y ∈ Y is denoted by f−1({y}) and is defined
as f−1({y}) = {x ∈ X/f(x) = y}.

Result 2:

(a)A function f is said to be injective if all the Fibre sets are either empty
or singleton. or If any horizontal line intersect graph then it must intersect at
only one point.
(b)A function f is said to be surjective if all the Fibre sets are non-empty. or
Any horizontal line will intersect the graph of f at some point.
(c)A function f is said to be bijective if all the Fibre sets are singleton. or Any
horizontal line intersect f at only one point.

3.2 Geometrical interpretation of solving three
variable two homogeneous equation

Consider a system of two equations a1x+b1y+c1z = 0 (P1) and a2x+b2y+c2z =
0 (P2) with c2 6= 0 and P1 6= αP2 for some α ∈ R. We are interested in finding
the solution of this system geometrically. By method of gauss elimination we
multiply −c1c2 with P2 and add it with P1 to get the equation of another plane
P ′1. P ′1 = d1x+d2y = 0.(With either d1 or d2 non zero).Firstly we have to show
that the intersection of P1 and P2 is same as the intersection of P ′1 = P1 + λP2

(for some λ ∈ R) and P2. Algebraically it is easy to show that. Let us try
geometrically.
P1 and P2 both pass through origin. Let L be the intersection of P1 and P2 which
is a line(as possibility of these two planes to be identical we have eliminated by
P1 6= αP2 for some α ∈ R).
⇒ L passes through origin. Let L′ be the intersection of P ′1 and P2. P ′1 is
a plane that contains the Z-axis as coefficient of z in its equation is 0. We
can have a plane containing the Z-axis and L (as both pass through origin i.e.
intersect).P ′1 contains Z-axis. Now if we take L′ = L then the required plane
will be P ′1 itself.
After we get the equation of P ′1 we write y in terms of x (d2 6= 0) . and back
substitute this value of y and x in equation of P2 to get the value of z. Lets see
what happens geometrically.
Equation of P ′1 will look like a straight line with slope −d1d2

in XY - plane. This
straight line is the projection of P ′1 into XY - plane. Whenever we see projection
of a plane into XY -plane we are supposed to get the whole XY plane. But by
doing Gaussian elimination we get a line as the projection. Now this line is the
protection of the line which is contained in P ′1. In Gaussian elimination when
we back substitute the value of y and x we get the corresponding z. x and y
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satisfy the equation of P ′1. When we do back substitution we get the line L as
we back substitute in the equation of P2 which contains L. Geometrically we re
project the projected line to the original line L.

3.3 Lines

Definition 1:

Let V be a vector space and 0 6= d ∈ V . A line passing through p ∈ V
and having dirctiond, is denoted by l(p; d) and defined as
l(p; d) = {v ∈ V/ there exists t ∈ R, v = p+ td} = p+Rd
d is called the direction vector.as the Line is the unlimited extension of the line
segment joining 0 and d.

Result 1:

l(p; d) = l(q; d) iff (q − p) is a multiple of d.
Proof :- Let l(p; d) = l(q; d). Take x ∈ l(p; d) ⇒ x ∈ l(q; d) as both the lines are
same. Then there exists s, t ∈ R such that x = p+sd = q+td.So q−p = (s−t)d,
that is,q − p is a multiple of d.
Conversely let q − p is a multiple of d. It means q − p = αd for some α ∈ R.
Let v ∈ l(p; d), then v = p+ td = (q − αd) + td = q + (t− α)d for some t ∈ R.
Therefore v ∈ l(q; d) and l(p; d) ⊆ l(q; d). Similarly we can prove l(q; d) ⊆ l(p; d)
and hence l(p; d) = l(q; d).

Result 2:

l(p; d) = l(p;αd) for any α ∈ R \ {0}.

Proof :-l(p; d) ⊂ l(p;αd) for α = 1. Take a point x ∈ l(p;αd), then there
exists t ∈ R such that x = p + tαd. We choose s = αt for t ∈ R such that
x = p + s

α · αd or x = p + sd. α 6= 0 means for a particular t we can choose
the corresponding s only(Our choice is a bijection map). It means for every
existing t ∈ R we can find corresponding existing s ∈ R such that x = p + sd.
⇒ x ∈ l(p; d) or l(p;αd) ⊂ l(p; d). This completes the proof.

Result 3:

l(p; d) = l(q; d) for any q ∈ l(p; d).

Proof :-l(p; d) ⊂ l(q; d) by taking q = p ∈ l(p; d). For q ∈ l(p; d) we can
write there exists t ∈ R such that q = p+ td...(i). Take r ∈ l(q; d). We can write
that there exists s ∈ R such that r = q + sd...(ii).
⇒ There exists t, s ∈ R such that r = p + (t + s)d(by adding (i) and (ii)).
We choose u = t + s for t, s ∈ R. For any particular t and s we can choose
the corresponding u only(Our choice is a bijection map).So for every existing
t, s we can find corresponding u ∈ R such that r = p + ud. ⇒ r ∈ l(p; d) or
l(q; d) ⊂ l(p; d). This completes the proof.
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Result 4:

Any two distinct point determine a unique line.

Proof :-Let l(p; d) be a line that passes through p and q. Then there exists
t ∈ R such that q = p+ td..(i). Let l(r, d′) be another line that contains p and
q. Then there exists t1, t2 ∈ R such that p = r+ t1d

′..(ii) and q = r+ t2d
′ ..(iii).

(iii)-(ii) yields q = p+ (t2− t1)d′..(iv). As p and q are different we can not have
t2 − t1 = 0 So q ∈ l(p; d′) . Now (iv)-(i) yields (t2 − t1)d′ = td By dividing both
sides by t2−t1 we have d′ = αd as multiple of d (Note t 6= 0 as p and q are differ-
ent⇒ α 6= 0) . So p, q ∈ p(l;αd)⇒ p, q ∈ l(p; d) (by result 3) It is the same line.

Definition 2:

We say two lines l(p; d1) = l(p, d2) are parallel if d1 = αd2 for some α ∈ R.
(α, d1, d2 6= 0)

Result 5:

Given l and q not belonging to l there exists a unique line l(q; d) such that
l(q; d) is parallel to l.

Proof :- Let d be the direction of l. Then l(q; d) is passing through q and
parallel to l. Let there exists another line l(q; d1) such that l(q; d1) is paral-
lel to l. Then d1 = αd for some α ∈ R \ {0}. From Result 2 it follows that
l(q; d1) = l(q; d).
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